

Aromatogramm & Co

Ätherische Öle als gezielte "Keimkiller", in der individuellen, antimikrobiellen Therapie

Gerda Dorfinger

Vorschau

- Allgemeine Mikrobiologie
- Antibiotikaresistenz
- Diagnostik im Labor
- Vergleich verschiedener Methoden
- Quorum Sensing
- Fall aus dem Spitalsalltag

Bakterien

Bakterien leben in einer <u>Symbiose</u> mit dem Menschen

- Darmbakterien
- Haut (Koagulase negative Staphylokokken)
- Vagina (Lactobacillus acidophilus)

Resistenz

Natürliche Resistenz

Genetische Eigenschaften der Bakterien lassen das Antibiotikum nicht wirken

- Erworbene Resistenz
- –abbauende Enzyme
- -verminderte Permeabilität
- -Drug Efflux

Erworbene Resistenz

- Resistenz-Plasmide werden von einem Bakterium zum anderen übertragen über Ausläufer (Pili)
- So kann Resistenz verbreitet werden
- R-Plasmide tragen oftmals verschiedene Resistenzgene
- Multi-Drug-Resistenz

Ätherische Öle mit antimikrobieller Wirkung

Thymian ct. thymol (Thymus vulgaris)

Oregano (Origanum vulgare)

Zimtrinde (Cinnamomum zeylanicum)

Teebaum (Melaleuca alternifolia)

Ätherische Öle mit antimikrobieller Wirkung

Lavendel (Lavandula angustifolia)

Rosengeranie (Pellargonium graveolens)

Palmarosa (Cymbopogon martinii)

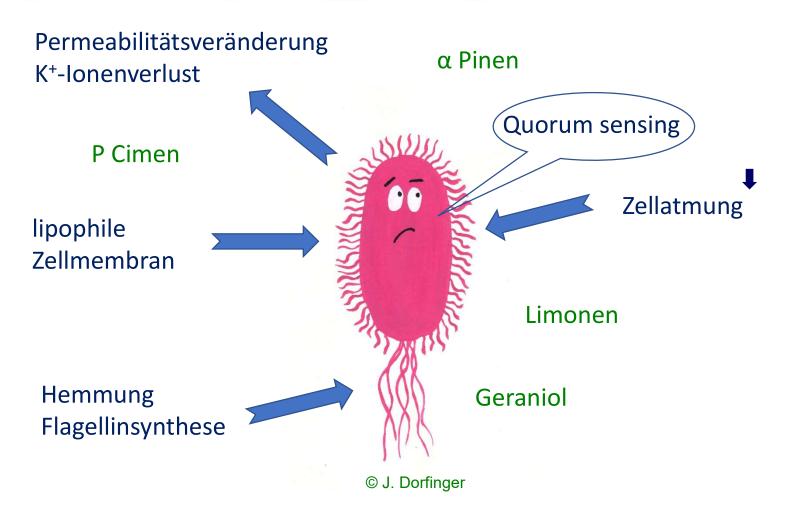
Inhaltstoffe mit breitem Wirkungsspektrum

- Phenole
 - Thymol
 - Carvacrol
- Phelylpropane
 - Eugenol
 - Isoeugenol
- Zimtalkohol- u. aldehyd

Inhaltstoffe mit selektivem Wirkungsspektrum

- Aldehyde
 - Citronellal, Citral, Neral
- Ketone
 - Thujone, Carvone, Verbenone
- Sesquiterpene
 - ß-Caryophyllen,Bisabulol, Nerolidol
- Alkohole
 - Menthol, Geraniol, Citronellol
- Ester
 - Geranylacetat, Linalylacetat

Antimikrobielle Wirkung ätherischer Öle



- Chem. Zusammensetzung der ätherischen Öle
- Zellwandstruktur Bakterien

Multi Target Therapie

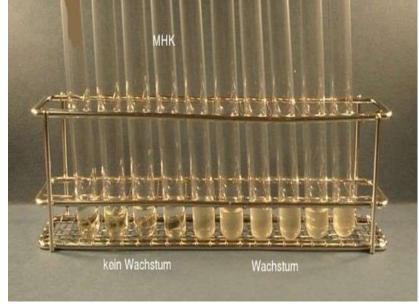
Resistenztestung im Labor

Testung der Wirkung von Antibiotika

- Antibiogramm
- Reihenverdünnungstest (Dilutionstest)
- E-Test

Testung der Wirkung ätherischer Öle

- Aromatogramm
- Reihenverdünnungstest


Diagnostik in der Aromatherapie

Aromatogramm

Reihenverdünnungstest/ Dilutionsmethode

Anzüchtung

- primäre Kultur aus z.B. Mittelstrahlharn,
 Vaginalsekret oder Ejakulat
- ca. 24h Bebrütung bei 36°C

Methode 1: Aromatogramm

- Pathogene Keime Aufschwemmung in NaCl
- Agar
- Ölgetränkte Testplättchen
- Bebrütung 24h
- Beurteilung der Hemmhöfe

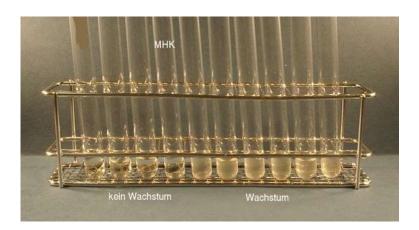
Aromatogramm

Vorteile des Aromatogramms

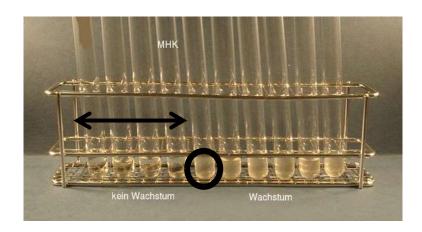
- günstige Methode
- mehrere Öle gleichzeitig getestet
- einfach und routinetauglich
- rasches Ergebnis

Nachteile des Aromatogramms

- Hemmhofdurchmesser beeinflussbar (z.B. Keimmenge, Inkubation, Plättchengröße, Substanzmenge, Agar)
- Luftraumwirkung*
- Substanzspezifischen Diffusionskoeffizienten*
- Therapeutisch relevante Menge oder Konzentrationsbestimmung nicht möglich
- Keine Aussage über bakteriostatische oder bakterizide Wirkung


* A. Pauli, et al.: KIM 11/07

Reihenverdünnungstest (Dilutionsmethode)


- Pathogene Keime Aufschwemmung in NaCl
- Teströhrchen mit unterschiedlicher Ölkonzentration in Boullion
- Bebrütung

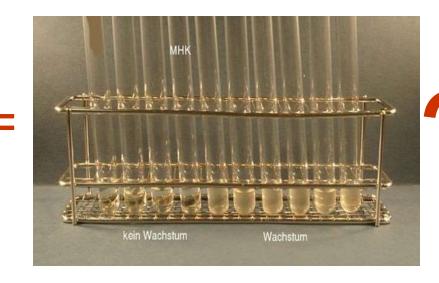
Reihenverdünnungstest (Dilutionsmethode)

- Beurteilung der Trübung
 (MHK) minimale Hemmkonzentration
- Kultur der unbewachsenen Röhrchen (MBK) minimale bakterizide Konzentration

Vorteile Reihenverdünnungstest

- standardisiertes Verfahren
- therapeutisch relevante Menge oder Konzentrationsbestimmung möglich
- Aussage über bakteriostatische oder bakterizide Wirkung möglich

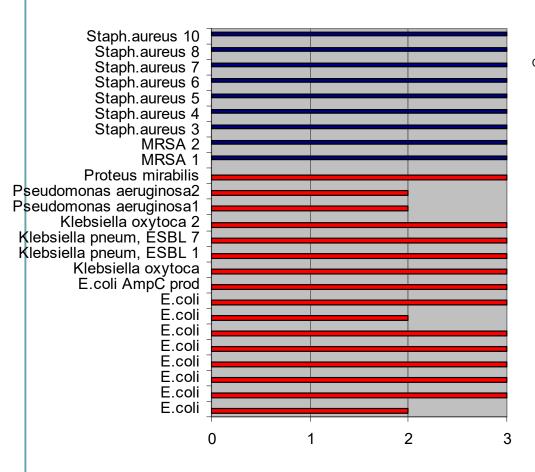
Nachteile Reihenverdünnungstest


- teurer
- Einzeltest für jedes Öl
- aufwendig keine Routinemethode
- zeitintensiv

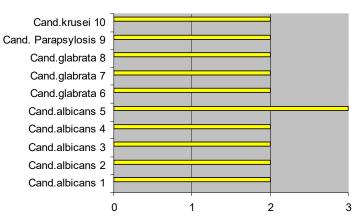
Diagnostik in der Aromatherapie, aber wie?

Teebaum

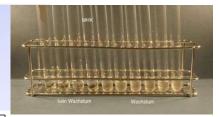
Gattung:Myrtengewächse

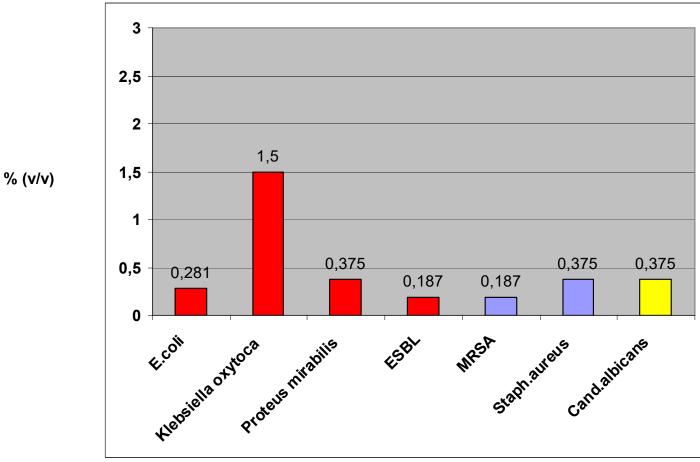

❖ Hauptinhaltsstoffe:
Monoterpene(35-50%)
Monoterpenole(30-45%)
v.a. Terpinen-4-ol

E.Zimmermann


Teebaumöl Aromatogramm

Bakterien



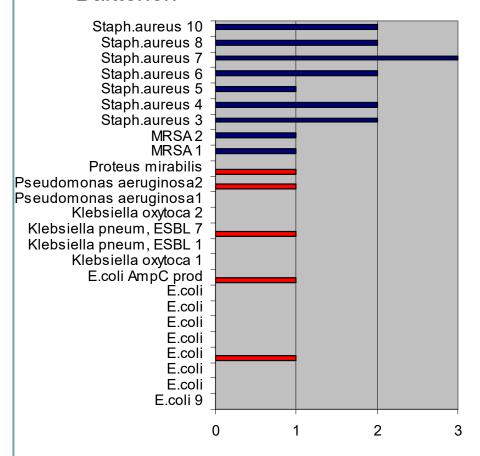

Pilze

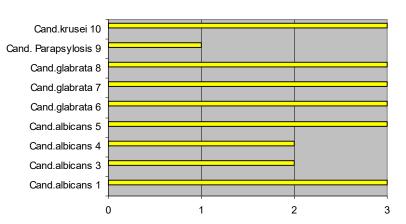
Teebaumöl Reihenverdünnungstest

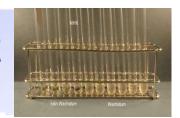
Rosengeranie

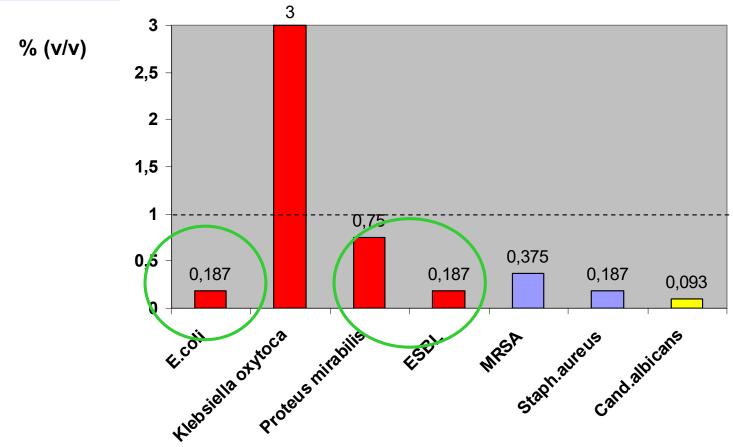
Fotolia.at/stock.adobe.com/Prashant ZI

❖ Gattung:
Storchschnabelgewächse


❖ Hauptinhaltsstoffe:
Monoterpenole(50-65%)
v.a. Citronellol, Geraniol


Rosengeranie Aromatogramm


Bakterien



Pilze

Rosengeranie Reihenverdünnungstest

Aromatherapie-Routinediagnostik

- Aromatogramm
 - ➤ Überblick über Wirkung
 - ➤ Günstige, rasche Screeningmethode
- Genauere Diagnostik → Reihenverdünnungstest
- Unterschiedliches Verhalten einzelner Öle in beiden Methoden!

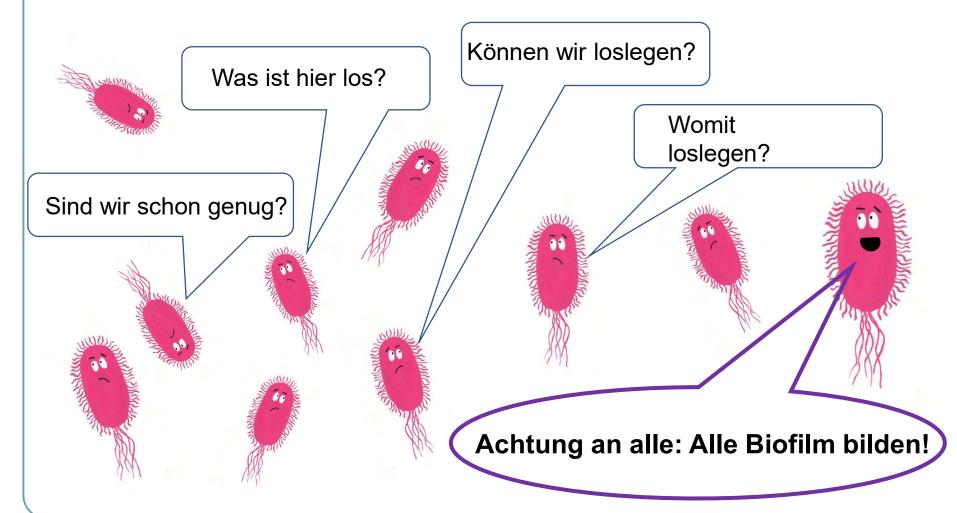
Annäherungstest

Kampf gegen Bakterien

- Bakterien abtöten
 - Eingriff in biochemischen Metabolismus
 - Struktur/Funktion
- **≻**Mutation
- ➤ Resistenzen

Neue Ansätze?

Quorum Sensing (QS)



- Kommunikation in der Bakterienkolonie
- Sekretion von Signalmolekülen
 - -Gram-positive Bakt = kleine Pepdidstrukturen
 - -Gram-negative Bakt = Acyl-Homoserin-Lacton (AHL/HSL)
- Zelldichte, Schwellenwert im Medium überschritten
- Gemeinsame Aktivität

QS: Kommunikation der Bakterien

Quorum Sensing Wirkung

Durch QS werden verschiedene Aktivitäten reguliert:

Synthese von Virulenzfaktoren

<u>Toxinausschüttung</u>

Biofilmbildung

Bakterien sind effektiver und stärker in Gemeinschaft

Biofilm bietet Schutz

Persister überleben

I. Stappen, Journal Club, Februar 2020

ätherische Öle mit Anti QS

Cinnamonum verum
Coriandrum sativum
Eucalyptus radiata
Eucalyptus globulus
Juniperus communis
Lavandula angustifolia
Mentha piperita
Oreganum majorana

Pinus silvestris Rosa damascena Salvia officinalis Thymus vulgaris u.v.m.

"Quorum Sensing and Essential Oils" Diplomarbeit Isabel Charlotte Soede

Fall Geriatriezentrum Steiermark

- 58jähriger multimorbider Wachkomapatient
- 4 MRGN Acinetobacter baumannii und 3 MRGN Proteus mirabilis
- antiseptische Waschungen auf Basis von Octenidin-dihydrochlorid
- mehrfache Abstrichkontrollen keine Änderung der Keimbesiedelung

Fall Geriatriezentrum Steiermark

- Aromatogramm (Cajeput, Teebaum, Oregano, Lavendel, Rosengeranie)
- täglich Waschungen und Hautöl aufgetragen
- 3% Cajeput, 4% Teebaumöl, 1% Oregano, 1% Rosengeranie und 1% Lavendel ad 100ml Jojobaöl
- nach 2 Monaten, zwei Abstrichkontrollen
- Kein Wachstum

Zusammenfassung

- Aromatherapie → komplementäre Behandlung
- gute Diagnostik ermöglicht gezielte Therapie
- antimikrobielle Wirkung
- Wirksamkeit gegen multiresistente Keime
- verringern QS-Aktivität
- weniger Pathogenität ohne das Bakterienwachstum zu beeinflussen
- weitere klinische Forschung wichtig!

Vielen Dank für Ihre Aufmerksamkeit!

© J. Dorfinger

Literatur / Bilder

- 1. Pauli A. Kritische Anmerkungen zur keimhemmenden Wirkung ätherischer Öle und deren Bestandteile. Komplementäre und integrative Medizin 48:20-23 11/2007
- 2. Pauli A, Kobeczka KH. Evaluation of Inhibitory data of essential oil constituents obtained with different microbiological testing methods. In: Franz C., Mathe A., Buchbauer G. (Eds) Essential oils: Basic and Applied Research. Carol Stream Allured Publishing Vienna 1996:33-36.
- 3. Lang G, Buchbauer G. A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review. Flavour and Fragrance Journal 2012:27,13-39
- 4. Steflitsch W, Wolz D, Buchbauer G. Aromatherapie in Wissenschaft und Praxis. Wiggensbach: Stadelmann Verlag; 2013
- "Quorum Sensing and Essential Oils",
 Diplomarbeit Isabel Charlotte Soede, Wien 2016
 Betr:Univ.Prof. i.R. Mag. Dr. Gerhard Buchbauer

Bild Master: ©

© J. Dorfinger